Add like
Add dislike
Add to saved papers

CD133 promotes the self-renewal capacity of thyroid cancer stem cells through activation of glutamate aspartate transporter SLC1A3 expression.

CD133+ cancer stem cells are responsible for thyroid cancer initiation. The regulatory pathways essential for sustaining the self-renewal of thyroid cancer stem cells remain largely unknown. Glutamate signaling regulates the self-renewal ability of stem cells. In the present study, we found that the level of glutamate was higher in CD133+ thyroid cancer cells than in CD133- thyroid cancer cells. The transcriptional level of glutamate aspartate transporter SLC1A3 was high in CD133+ thyroid cancer cells. Activation of NF-κB signaling by CD133 was responsible for SLC1A3 high transcription level in CD133+ thyroid cancer cells. Knock down of SLC1A3 significantly reduced the level of glutamate and inhibited the self-renewal activity and tumorigenicity of CD133+ thyroid cancer cells. Overexpression of SLC1A3 rescued the negative effect of CD133 knockdown on the self-renewal capability of CD133+ thyroid cancer cells. Taken together, CD133 promotes the self-renewal capacity of CD133+ thyroid cancer cells at least partly through activation of SLC1A3 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app