Add like
Add dislike
Add to saved papers

Clinical intelligence: New machine learning techniques for predicting clinical drug response.

Predicting the response, or sensitivity, of a clinical drug to a specific cancer type is an important research problem. By predicting the clinical drug response correctly, clinicians are able to understand patient-to-patient differences in drug sensitivity outcomes, which in turn results in lesser time spent and lower cost associated with identifying effective drug candidates. Although technological advances in high-throughput drug screening in cells led to the generation of a substantial amount of relevant data, the analysis of such data would be a challenging task. There is a critical need for advanced machine learning (ML) algorithms to generate accurate predictions of clinical drug response. A major goal of this work is to provide advanced ML tools to data analysts, who would in turn build prediction calculators to be incorporated into intelligent clinical decision support systems. Such innovative tools could be used to enhance patient-care, among other uses. To achieve this goal, we develop new ML techniques, including a transfer learning approach coupled with or without a boosting technique. Experimental results on real clinical data pertaining to breast cancer, multiple myeloma, and triple-negative cancer patients demonstrate the effectiveness and superiority of the proposed approaches compared to baseline approaches, including existing transfer learning methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app