Add like
Add dislike
Add to saved papers

Hierarchically structured TiO 2 -based composites for Fenton-type oxidation processes.

A novel hierarchically structured composite aimed as a stable catalyst for the heterogeneous Fenton-type (HFT) oxidation process was developed by using a cost-effective and versatile technique. Prussian Blue nanoparticles (PBNP) were dispersed onto aligned macroporous TiO2 (rutile) monoliths prepared via directional freezing of aqueous dispersions of TiO2 nanoparticles. The catalytic performance was evaluated in the HFT oxidation of an azo dye frequently used as a model contaminant, Orange G (OG). Experiments were carried out in a liquid batch-recycle reactor, in which the liquid flow rate was set to ensure negligible external mass transfer resistance. The catalyst exhibited good activity to form highly oxidative radicals from hydrogen peroxide decomposition, which readily discolored OG. Significant reduction of the time required to attain complete discoloration and improvement in TOC removal were achieved by adjusting operating conditions and oxidant dosage strategies. Almost complete OG conversion at around 90 min and 34.4% of TOC removal after 4 h were achieved by using the best evaluated strategy. The catalyst activity was tested under specific operating conditions and remained unaltered during 42 cycles of 4 h each (total 168 h). The fresh and used PBNP/TiO2 catalysts and the support were thoroughly characterized by several techniques. Results supported the excellent stability exhibited by the catalyst in the OG HFT oxidation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app