Add like
Add dislike
Add to saved papers

Identification and expression profiling of candidate chemosensory membrane proteins in the band-winged grasshopper, Oedaleus asiaticus.

The band-winged grasshopper Oedaleus asiaticus (Orthoptera: Acridoidea) is an important insect pest in north China. Chemosensory membrane proteins are believed to be crucial factors in direct interactions with odorants in the chemosensory process. However, there is much limited information on the chemosensory system in this pest. In this study, a total of 69 candidate chemosensory membrane protein genes, including 60 olfactory receptors (ORs), 6 ionotropic receptors (IRs) and 3 sensory neuron membrane proteins (SNMPs), were identified for the first time from the antennal transcriptomes of O. asiaticus. Blastp match and phylogenetic analysis demonstrated that these chemosensory membrane proteins were the closest to their orthologous species, Locusta migratoria. The qRT-PCR analysis revealed that all tested 14 OR and two SNMP genes (OasiSNMP1 and OasiSNMP2a) were strongly expressed in adult antennae, and nearly all tested genes (15/16) displayed significant differences in the expression levels between both sexes. Moreover, two IR genes (OasiIR25a and OasiIR76b) had uniquely high expression levels in the antennae, labial palps and maxillary palps, while three IR genes (OasiIR1, OasiIR2 and OasiIR3) were highly expressed in most tested tissues (heads without antennae and mouthparts, labial palps, maxillary palps, labia without labial palps, thoraxes, tarsi, and abdomens) except for antennae, labra, and wings but OasiIR5a was just faintly expressed in the antennae, labia without labial palps, labial palps, maxillary palps and abdomen. Our results provide important molecular information for further investigation on the chemoreception mechanisms in O. asiaticus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app