Add like
Add dislike
Add to saved papers

iTRAQ-based proteome profiling of hyposaline responses in zygotes of the Pacific oyster Crassostrea gigas.

Low salinity treatment is proven to be the practical polyploidy inducing method for shellfish with advantages of lower cost, higher operability and reliable food security. However, little is known about the possible molecular mechanism of hypotonic induction. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) based proteomic profiling was pursued to investigate the responses of zygotes of the Pacific oyster Crassostrea gigas to low salinity. A total of 2235 proteins were identified and 87 proteins were considered differentially expressed, of which 14 were up-regulated and 69 were down-regulated. Numerous functional proteins including ADP ribosylation factor 2, DNA repair protein Rad50, splicing factor 3B, tubulin-specific Chaperone D were significantly changed in abundance, and were involved in various biology processes including energy generation, vesicle trafficking, DNA/RNA/protein metabolism and cytoskeleton modification, indicating the prominent modulation of cell division and embryonic development. Parallel reaction monitoring (PRM) analyses were carried out for validation of the expression levels of differentially expressed proteins (DEPs), which indicated high reliability of the proteomic results. Our study not only demonstrated the proteomic alterations in oyster zygotes under low salinity, but also provided, in part, clues to the relatively lower hatching rate and higher mortality of induced larvae. Above all, this study presents a valuable foundation for further studies on mechanisms of hypotonic induction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app