Add like
Add dislike
Add to saved papers

Characterization of a novel antibacterial N-acyl amino acid synthase from soil metagenome.

In an effort to isolate novel natural antibiotics, we searched for antibacterial long-chain N-acyl amino acid synthase (NAS) genes from 70,000 soil metagenome clones by Bacillus subtilis-overlaying screening. In an antibacterial cosmid clone, YS92B, a single gene nasYPL was responsible for the production of the Nas. nasYPL was 903 bp long, and the deduced amino acid sequence showed the highest 71% identity with a hypothetical protein from Massilia niastensis. Phylogenetic analysis demonstrated that NasYPL belongs to Group 1 Nas. Heterologous expression of the same nasYPL gene in Escherichia coli and two Pseudomonas strains (P. putida and P. koreensis) conferred antibacterial activities against Listeria monocytogenes, Staphylococcus epidermidis, and Bacillus subtilis. Mass spectral analysis of the antibacterial fractions identified 7 peaks corresponding to long-chain N-acyl tyrosine, 5 peaks to N-acyl phenylalanine, and 3 peaks to N-acyl leucine (or isoleucine) derivatives linked with 7 fatty acids, indicating enzymatic products derived by NasYPL. Therefore, NasYPL expression by host-specific manner may provide applicable antibacterial characteristics to biotechnologically important Pseudomonas strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app