Add like
Add dislike
Add to saved papers

Aloe emodin induces hepatotoxicity by activating NF-κB inflammatory pathway and P53 apoptosis pathway in zebrafish.

Toxicology Letters 2019 Februrary 14
The aim of this study was to investigate the hepatotoxic effect and its underlying mechanism of aloe emodin (AE). AE was docked with the targets of NF-κB inflammatory pathway and P53 apoptosis pathway respectively by using molecular docking technique. To verify the results of molecular docking and further investigate the hepatotoxicity mechanism of AE, the zebrafish Tg (fabp10: EGFP) was used as an animal model in vivo. The pathological sections of zebrafish liver were analyzed to observe the histopathological changes and Sudan black B was used to study whether there were inflammatory reactions in zebrafish liver or not. Then TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect the apoptotic signal of zebrafish liver cells, finally the mRNA expression levels as well as the protein expression levels of the targets in NF-κB and P53 pathways in zebrafish were measured by quantitative Real-Time PCR (qRT-PCR) and western blot. Molecular docking results showed that AE could successfully dock with all the targets of NF-κB and P53 pathways, and the docking scores of most of the targets were equal to or higher than that of the corresponding ligands. Pathological sections showed AE could cause zebrafish liver lesions and the result of Sudan black B staining revealed that AE blackened the liver of zebrafish with Sudan black B. Then TUNEL assay showed that a large number of dense apoptotic signals were observed in AE group, mainly distributed in the liver and yolk sac of zebrafish. The results of qRT-PCR and western blot showed that AE increased the mRNA and protein expression levels of pro-inflammatory and pro-apoptotic targets in NF-κB and P53 pathways. AE could activate the NF-κB inflammatory pathway and the P53 apoptosis pathway, and its hepatotoxic mechanism was related to activation of NF-κB-P53 inflammation-apoptosis pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app