Add like
Add dislike
Add to saved papers

Strategic design of peptide-decorated aligned nanofibers impregnated with triiodothyronine for neural regeneration.

Nerve injuries are often debilitating as its regeneration occurs in a slow and laborious manner. Remediation of nerve injury is a colossal task as functional restoration in larger gaps seldom occurs due to the complex nerve regeneration mechanism. A nanofiber-based graft material has been fabricated to provide topographical and biochemical cues to encourage neural differentiation. Laminin plays a crucial role in supporting peripheral nerve regeneration and hence aligned polyvinyl cinnamate nanofibers surface-conjugated with laminin-derived cell-adhesion peptides have been fabricated to improve selective neural adhesion and regeneration. Further, triiodothyronine has been encapsulated within the nanofibers enabling its sustained release so as to bolster regeneration and reinstate the lost functionality to the damaged nerve. The fabricated nanofibers were characterized for its physicochemical, morphological and topographical properties. Nanofibers were biocompatible, improved cell adhesion rate and illustrated favorable interaction with cells. Gene expression (showed 9.5 and 4.1 fold increase in β-tubulin and MAP 2 expression, respectively) and protein expression (immunofluorescence, flow cytometry and western blot) studies confirmed the positive influence of the scaffold over cell differentiation. The studies were extrapolated to adult zebrafish model with a surgical incision in posterior lateral line. The biocomposite treated group showed earlier functional restoration of the nerve compared to control groups detected by touch-evoked response. Thus, the combination of aligned nanofibers providing topographical cue, along with the peptides and triiodothyronine serving as biochemical cues has a robust potential to restore functionality to the injured nerve, thereby opening avenues for fabrication of regenerative nerve grafts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app