Add like
Add dislike
Add to saved papers

Application of 3-Dimensional Printing in Pediatric Living Donor Liver Transplantation: A Single-Center Experience.

Liver Transplantation 2019 Februrary 16
Three-dimensional (3D) printing has been used to support organ transplantations. However, whether it helps remains unclear. This study aimed to present and assess the application of 3D-printed liver models in pediatric living donor liver transplantation (LDLT). The 3D images were printed to touchable liver models with transparent liver parenchyma, specifically colored hepatic vessels, and biliary structures. A total of 30 consecutive recipients were enrolled in the study: 10 were operated on with the support of 3D printing (3D-printing group) and 20 (control group) were operated on without it. Detailed photographs and data of the cases in the 3D-printing group were presented. One patient underwent auxiliary partial orthotopic liver transplantation using the left lobe graft, in which the abdominal cavity model was also printed to test whether the planned graft fit the recipient's abdominal cavity. The 3D-printed models facilitated surgical planning and procedures, particularly in the management of hepatic veins and in the prevention of large-for-size syndrome. The operative time of donors in the 3D-printing group was significantly shorter compared with the control group (2.3 ± 0.4 versus 3.0 ± 0.4 hours; P < 0.001). Inpatient costs for donors in the 3D-printing group were 17.1% lower than those in the control group (34.6 ± 6.6 versus 41.7 ± 10.4 thousand ¥; P = 0.03). In conclusion, in small infants and complicated pediatric LDLT patients, 3D-printed models can help minimize the risk of large-for-size syndrome and graft reduction. The 3D-printed models may be conducive to liver graft procurement and intraoperative assistance in pediatric LDLT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app