Add like
Add dislike
Add to saved papers

Profiling of rotavirus 3'UTR-binding proteins reveals the ATP synthase subunit ATP5B as a host factor that supports late-stage virus replication.

Genome replication and virion assembly of segmented RNA viruses are highly coordinated events, tightly regulated by sequence and structural elements in the UTRs of viral RNA. This process is poorly defined and likely requires the participation of host proteins in concert with viral proteins. In this study, we employed a proteomics-based approach, named RNA-protein interaction detection (RaPID), to comprehensively screen for host proteins that bind to a conserved motif within the rotavirus (RV) 3' terminus. Using this assay, we identified ATP5B, a core subunit of the mitochondrial ATP synthase, as having high affinity to the RV 3'UTR consensus sequences. During RV infection, ATP5B bound to the RV 3'UTR and co-localized with viral RNA and viroplasm. Functionally, siRNA-mediated genetic depletion of ATP5B or other ATP synthase subunits such as ATP5A1 and ATP5O reduced the production of infectious viral progeny without significant alteration of intracellular viral RNA levels or RNA translation. Chemical inhibition of ATP synthase diminished RV yield in both conventional cell culture and in human intestinal enteroids, indicating that ATP5B positively regulates late-stage RV maturation in primary intestinal epithelial cells. Collectively, our results shed light on the role of host proteins in RV genome assembly and particle formation and identify ATP5B as a novel pro-RV RNA-binding protein, contributing to our understanding of how host ATP synthases may galvanize virus growth and pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app