Add like
Add dislike
Add to saved papers

Effects of mechanical vibration on miniscrew implants and bone: Fem analysis.

International Orthodontics 2019 Februrary 13
OBJECTIVE: The aim of this FEM study was to assess the effect of mechanical vibration force on miniscrews and stress distribution in cortical and trabecular bone around miniscrews.

METHODS: A 3D model was created using a CBCT image of a patient. Three different analyses were performed on a single model. Material properties, boundary conditions and the quality of applied forces (direction and magnitude) were defined. 150 gf, 150 gf and 30Hz (0.2N), 150 gf and 111Hz (0.06N) were applied to miniscrew from distal to mesial and from sulcus to alveolar crest direction like a power arm application. The first moment effect of force and vibration were evaluated by using Algor Fempro FEM analysis program. Von Mises and principal stress distribution on miniscrews and bone layers were evaluated by different force and vibration applications.

RESULTS: It was seen that Von Mises stress distribution on miniscrew was located on the neck region and the highest stress levels were observed in the 1st analysis (27,0159N (mm2 )), which was only force application. The loading of the cortical bone in the proximity of the miniscrew was clearly greater with only force application rather than force and vibration application together. Maximum and minimum principle stress values gradually decreased while vibration value increased.

CONCLUSION: It was concluded that mechanical vibration force might reduce the peri-implant loading of the bone and stress levels on the miniscrews.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app