Add like
Add dislike
Add to saved papers

In-DRAM Cache Management for Low Latency and Low Power 3D-Stacked DRAMs.

Micromachines 2019 Februrary 15
Recently, 3D-stacked dynamic random access memory (DRAM) has become a promising solution for ultra-high capacity and high-bandwidth memory implementations. However, it also suffers from memory wall problems due to long latency, such as with typical 2D-DRAMs. Although there are various cache management techniques and latency hiding schemes to reduce DRAM access time, in a high-performance system using high-capacity 3D-stacked DRAM, it is ultimately essential to reduce the latency of the DRAM itself. To solve this problem, various asymmetric in-DRAM cache structures have recently been proposed, which are more attractive for high-capacity DRAMs because they can be implemented at a lower cost in 3D-stacked DRAMs. However, most research mainly focuses on the architecture of the in-DRAM cache itself and does not pay much attention to proper management methods. In this paper, we propose two new management algorithms for the in-DRAM caches to achieve a low-latency and low-power 3D-stacked DRAM device. Through the computing system simulation, we demonstrate the improvement of energy delay product up to 67%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app