Add like
Add dislike
Add to saved papers

Populus euphratica JRL Mediates ABA Response, Ionic and ROS Homeostasis in Arabidopsis under Salt Stress.

Sodium chloride (NaCl) induced expression of a jacalin-related mannose-binding lectin ( JRL ) gene in leaves, roots, and callus cultures of Populus euphratica (salt-resistant poplar). To explore the mechanism of the PeJRL in salinity tolerance, the full length of PeJRL was cloned from P. euphratica and was transformed into Arabidopsis. PeJRL was localized to the cytoplasm in mesophyll cells. Overexpression of PeJRL in Arabidopsis significantly improved the salt tolerance of transgenic plants, in terms of seed germination, root growth, and electrolyte leakage during seedling establishment. Under NaCl stress, transgenic plants retained K⁺ and limited the accumulation of Na⁺. PeJRL -transgenic lines increased Na⁺ extrusion, which was associated with the upward regulation of SOS1 , AHA1 , and AHA2 genes encoding plasma membrane Na⁺/proton (H⁺) antiporter and H⁺-pumps. The activated H⁺-ATPases in PeJRL -overexpressed plants restricted the channel-mediated loss of K⁺ that was activated by NaCl-induced depolarization. Under salt stress, PeJRL ⁻transgenic Arabidopsis maintained reactive oxygen species (ROS) homeostasis by activating the antioxidant enzymes and reducing the production of O₂- through downregulation of NADPH oxidases. Of note, the PeJRL- transgenic Arabidopsis repressed abscisic acid (ABA) biosynthesis, thus reducing the ABA-elicited ROS production and the oxidative damage during the period of salt stress. A schematic model was proposed to show the mediation of PeJRL on ABA response, and ionic and ROS homeostasis under NaCl stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app