Add like
Add dislike
Add to saved papers

DFT computational schemes for 15 N NMR chemical shifts of the condensed nitrogen containing heterocycles.

A systematic DFT study of the accuracy factors (functionals, basis sets, solvent effects) for the computation of 15 N NMR chemical shifts has been performed in the series of condensed nitrogen containing heterocycles. The behavior of the most representative functionals was examined based on the benchmark calculations of 15 N NMR chemical shifts in the reference set of compounds. It was found that the best agreement with experiment was achieved with OLYP functional in combination with aug-pcS-3(N)//pc-2 locally dense basis set scheme providing MAE of 5.2 ppm in the range of about 300 ppm. Taking into account solvent effects was performed within a general Tomasi's polarizable continuum model scheme. It was also found that computationally demanding supermolecular solvation model computations essentially improved some "difficult" cases, as was illustrated with phenanthroline dissolved in methanol. Based on the performed calculations, some 200 unknown 15 N NMR chemical shifts were predicted with a high level of confidence for about 50 real-life condensed nitrogen containing heterocycles which could serve as a practical guide in structural elucidation of this class of compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app