Add like
Add dislike
Add to saved papers

Age-related changes in auditory cortex without detectable peripheral alterations: a multi-level study in Sprague Dawley rats.

Neuroscience 2019 Februrary 13
Aging is often considered to affect both the peripheral (i.e. the cochlea) and central (brainstem and thalamus-cortex) auditory systems. We investigated the effects of aging on the cochlea, brainstem and cortex of female Sprague Dawley rats. The auditory nerve threshold remained stable between the ages of 9 and 21 months, as did distortion product otoacoustic emissions and the number of ribbon synapses between inner hair cells and nerve fibers. The first clear signs of aging appeared in the brainstem, in which response amplitude decreased, with thresholds remaining stable until the age of 15 months, and increasing slightly thereafter. The responses of primary auditory cortex neurons revealed specific effects of aging: at 21 months, receptive fields were spectrally narrower and the temporal reliability of responses to communication sounds was lower. However, aging had a null or even positive effect on neuronal responses in the presence of background noise, responses to amplitude-modulated sounds, and responses in gap-detection protocols. Overall, inter-animal variability remained high relative to the variability across groups of different ages, for all parameters tested. Behavioral performance for AM noise modulation depth detection was worse in 21-month-old animals than in other animals. Age-related alterations of cortical and behavioral responses were thus observed in animals displaying no signs of aging at the peripheral level. These results suggest that intrinsic, central aging effects can affect the perception of acoustic stimuli independently of the effects of aging on peripheral receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app