Journal Article
Review
Add like
Add dislike
Add to saved papers

A multidimensional concept for mercury neuronal and sensory toxicity in fish - from toxicokinetics and biochemistry to morphometry and behavior.

BACKGROUND: Neuronal and sensory toxicity of mercury (Hg) compounds has been largely investigated in humans/mammals with a focus on public health, while research in fish is less prolific and dispersed by different species. Well-established premises for mammals have been governing fish research, but some contradictory findings suggest that knowledge translation between these animal groups needs prudence [e.g. the relative higher neurotoxicity of methylmercury (MeHg) vs. inorganic Hg (iHg)]. Biochemical/physiological differences between the groups (e.g. higher brain regeneration in fish) may determine distinct patterns. This review undertakes the challenge of identifying sensitive cellular targets, Hg-driven biochemical/physiological vulnerabilities in fish, while discriminating specificities for Hg forms. Scope of review A functional neuroanatomical perspective was conceived, comprising: (i) Hg occurrence in the aquatic environment; (ii) toxicokinetics on central nervous system (CNS)/sensory organs; (iii) effects on neurotransmission; (iv) biochemical/physiological effects on CNS/sensory organs; (v) morpho-structural changes on CNS/sensory organs; (vi) behavioral effects. The literature was also analyzed to generate a multidimensional conceptualization translated into a Rubik's Cube where key factors/processes were proposed. Major conclusions Hg neurosensory toxicity was unequivocally demonstrated. Some correspondence with toxicity mechanisms described for mammals (mainly at biochemical level) was identified. Although the research has been dispersed by numerous fish species, 29 key factors/processes were pinpointed. General significance Future trends were identified and translated into 25 factors/processes to be addressed. Unveiling the neurosensory toxicity of Hg in fish has a major motivation of protecting ichtyopopulations and ecosystems, but can also provide fundamental knowledge to the field of human neurodevelopment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app