Add like
Add dislike
Add to saved papers

Long Non-Coding RNA TFAP2A-AS1 Inhibits Cell Proliferation and Invasion in Breast Cancer via miR-933/SMAD2.

BACKGROUND It is well documented that long non-coding RNAs (lncRNAs) are involved in the progression of multiple human tumors by sponging microRNAs (miRNAs). However, whether lncRNA TFAP2A-AS1 plays a role in the tumorigenesis of breast cancer (BC) remains undetermined. MATERIAL AND METHODS Real-time PCR (qRT-PCR) assay was performed to detect the relative mRNA expression of TFAP2A-AS1 and miR-933. Flow cytometry analysis, CCK-8 assay, and Transwell assay were applied to detect the effects of TFAP2A-AS1 overexpression on cell cycle, apoptosis, viability, and invasion of BC cells. In vivo proliferation assay was performed to evaluate the effects of TFAP2A-AS1 overexpression on tumor growth. Bioinformatics methods, dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were used to predict and validate the interaction between TFAP2A-AS1 and miR-933, as well as SMAD2 and miR-933. Western blot assay was performed to examine the protein expression of SMAD2 in treated BC cells. RESULTS TFAP2A-AS1 expression was significantly lower in BC tissues and cell lines, and patients with high TFAP2A-AS1 expression exhibited a better prognosis than those with low TFAP2A-AS1 expression. Overexpression of TFAP2A-AS1 in BC cells caused cell cycle arrest, promoted cell apoptosis, suppressed cell ability, and attenuated cell invasion in vitro, and inhibited tumor growth in vivo. TFAP2A-AS1 was revealed to act as a miRNA sponge for miR-933 and then regulated the expression of Smad2. CONCLUSIONS Results from the present study suggest that TFAP2A-AS1 acts as a tumor suppressor in BC via the miR-933/SMAD2 axis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app