Add like
Add dislike
Add to saved papers

Quantum Rabi Model with Two-Photon Relaxation.

Physical Review Letters 2019 Februrary 2
We study a cavity-QED setup consisting of a two-level system coupled to a single cavity mode with two-photon relaxation. The system dynamics is modeled via a Lindblad master equation consisting of the Rabi Hamiltonian and a two-photon dissipator. We show that an even-photon relaxation preserves the Z_{2} symmetry of the Rabi model, and provide a framework to study the corresponding non-Hermitian dynamics in the number-parity basis. We discuss the role of different terms in the two-photon dissipator and show how one can extend existing results for the closed Rabi spectrum to the open case. Furthermore, we characterize the role of the Z_{2} symmetry in the excitation-relaxation dynamics of the system as a function of light-matter coupling. Importantly, we observe that initial states with even-odd parity manifest qualitatively distinct transient and steady state behaviors, contrary to the Hermitian dynamics that is only sensitive to whether or not the initial state is parity invariant. Moreover, the parity-sensitive dynamical behavior is not a creature of ultrastrong coupling and is present even at weak coupling values.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app