Add like
Add dislike
Add to saved papers

Resonant and Selective Excitation of Photocatalytically Active Defect Sites in TiO2.

It has been known for several decades that defects are largely responsible for the catalytically active sites on metal and semiconductor surfaces. However, it is difficult to directly probe these active sites because the defects associated with them are often relatively rare with respect to the stoichiometric crystalline surface. In the work presented here, we demonstrate a method to selectively probe defect-mediated photocatalysis, through differential AC photocurrent (PC) measurements. In this approach, electrons are photoexcited from the valence band to a relatively narrow distribution of sub-bandgap states in the TiO2, and then subsequently to the ions in solution. Because of their limited number, these defect states fill up quickly resulting in Pauli blocking, and are thereby undetectable under DC or CW excitation. In the method demonstrated here, the incident light is modulated with an optical chopper while the photocurrent is measured with a lock-in amplifier. Thin (5nm) films of TiO2 deposited by atomic layer deposition (ALD) on various metal films, including Au, Cu, and Al, exhibit the same wavelength-dependent photocurrent spectra, with a broad peak centered around 2.0eV corresponding to the band-to-defect transition associated with the hydrogen evolution reaction (HER). While the UV-vis absorption spectra of these films show no features at 2.0eV, photoluminescence (PL) spectra of these photoelectrodes show a similar wavelength dependence with a peak around 2.0eV, corresponding to the sub-band gap emission associated with these defect sites. As a control, alumina (Al2O3) films exhibit no PL or PC over the visible wavelength range. The AC photocurrent plotted as a function of electrode potential, shows a peak around -0.4 to -0.1V vs. NHE, as the monoenergetic defect states are tuned through a resonance with the HER potential. This approach enables the direct photo-excitation of catalytically active defect sites to be studied selectively without the interference of the continuum interband transitions or the effects of Pauli blocking, which is limited by the slow turnover time of the catalytically active sites, typically on the order of 1 µsec. We believe this general approach provides an important new way to study the role of defects in catalysis in an area where selective spectroscopic studies of these are few.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app