Add like
Add dislike
Add to saved papers

Early Developmental Exposure to Repetitive Long Duration of Midazolam Sedation Causes Behavioral and Synaptic Alterations in a Rodent Model of Neurodevelopment.

There is a large body of preclinical literature suggesting that exposure to general anesthetic agents during early life may have harmful effects on brain development. Patients in intensive care settings are often treated for prolonged periods with sedative medications, many of which have mechanisms of action that are similar to general anesthetics. Using in vivo studies of the mouse hippocampus and an in vitro rat cortical neuron model we asked whether there is evidence that repeated, long duration exposure to midazolam, a commonly used sedative in pediatric intensive care practice, has the potential to cause lasting harm to the developing brain. We found that mice that underwent midazolam sedation in early postnatal life exhibited deficits in the performance on Y-maze and fear-conditioning testing at young adult ages. Labeling with a nucleoside analog revealed a reduction in the rate of adult neurogenesis in the hippocampal dentate gyrus, a brain region that has been shown to be vulnerable to developmental anesthetic neurotoxicity. In addition, using immunohistochemistry for synaptic markers we found that the number of presynaptic terminals in the dentate gyrus was reduced, while the number of excitatory postsynaptic terminals was increased. These findings were replicated in a midazolam sedation exposure model in neurons in culture. We conclude that repeated, long duration exposure to midazolam during early development has the potential to result in persistent alterations in the structure and function of the brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app