Add like
Add dislike
Add to saved papers

Bacteroidetes Gliding Motility and the Type IX Secretion System.

Members of the phylum Bacteroidetes have many unique features, including gliding motility and the type IX protein secretion system (T9SS). Bacteroidetes gliding and T9SSs are common in, but apparently confined to, this phylum. Most, but not all, members of the phylum secrete proteins using the T9SS, and most also exhibit gliding motility. T9SSs secrete cell surface components of the gliding motility machinery and also secrete many extracellular or cell surface enzymes, adhesins, and virulence factors. The components of the T9SS are novel and are unrelated to those of other bacterial secretion systems. Proteins secreted by the T9SS rely on the Sec system to cross the cytoplasmic membrane, and they use the T9SS for delivery across the outer membrane. Secreted proteins typically have conserved C-terminal domains that target them to the T9SS. Some of the T9SS components were initially identified as proteins required for gliding motility. Gliding does not involve flagella or pili and instead relies on the rapid movement of motility adhesins, such as SprB, along the cell surface by the gliding motor. Contact of the adhesins with the substratum provides the traction that results in cell movement. SprB and other motility adhesins are delivered to the cell surface by the T9SS. Gliding and the T9SS appear to be intertwined, and components of the T9SS that span the cytoplasmic membrane may energize both gliding and protein secretion. The functions of the individual proteins in each process are the subject of ongoing investigations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app