JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Personalizing Second-Line Type 2 Diabetes Treatment Selection: Combining Network Meta-analysis, Individualized Risk, and Patient Preferences for Unified Decision Support.

BACKGROUND: Personalizing medical treatment often requires practitioners to compare multiple treatment options, assess a patient's unique risk and benefit from each option, and elicit a patient's preferences around treatment. We integrated these 3 considerations into a decision-modeling framework for the selection of second-line glycemic therapy for type 2 diabetes.

METHODS: Based on multicriteria decision analysis, we developed a unified treatment decision support tool accounting for 3 factors: patient preferences, disease outcomes, and medication efficacy and safety profiles. By standardizing and multiplying these 3 factors, we calculated the ranking score for each medication. This approach was applied to determining second-line glycemic therapy by integrating 1) treatment efficacy and side-effect data from a network meta-analysis of 301 randomized trials ( N = 219,277), 2) validated risk equations for type 2 diabetes complications, and 3) patient preferences around treatment (e.g., to avoid daily glucose testing). Data from participants with type 2 diabetes in the U.S. National Health and Nutrition Examination Survey (NHANES 2003-2014, N = 1107) were used to explore variations in treatment recommendations and associated quality-adjusted life-years given different patient features.

RESULTS: Patients at the highest microvascular disease risk had glucagon-like peptide 1 agonists or basal insulin recommended as top choices, whereas those wanting to avoid an injected medication or daily glucose testing had sodium-glucose linked transporter 2 or dipeptidyl peptidase 4 inhibitors commonly recommended, and those with major cost concerns had sulfonylureas commonly recommended. By converting from the most common sulfonylurea treatment to the model-recommended treatment, NHANES participants were expected to save an average of 0.036 quality-adjusted life-years per person (about a half month) from 10 years of treatment.

CONCLUSIONS: Models can help integrate meta-analytic treatment effect estimates with individualized risk calculations and preferences, to aid personalized treatment selection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app