Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of Perturbation-Based Balance Training in Subacute Persons With Stroke: A Randomized Controlled Trial.

BACKGROUND: Reactive balance responses are critical for fall prevention. Perturbation-based balance training (PBBT) has shown a positive effect in reducing the risk of falls among older adults and persons with Parkinson's disease.

OBJECTIVE: To explore the effect of a short-term PBBT on reactive balance responses, performance-based measures of balance and gait and balance confidence.

METHODS: Thirty-four moderate-high functioning, subacute persons with stroke (PwS) (lower extremity Fugl-Meyer score 29.2 ± 4.3; Berg Balance Scale [BBS] score 43.8 ± 9.5, 42.0 ± 18.7 days after stroke onset) hospitalized in a rehabilitation setting were randomly allocated to PBBT (n = 18) and weight shifting and gait training (WS&GT) (n = 16). Both groups received 12 training sessions, 30 minutes each, for a period of 2.5 weeks. PBBT included unexpected balance perturbations during standing and treadmill walking, WS&GT included weight shifting in standing and treadmill walking without perturbations. The main outcome measures, that is, multiple step-threshold and fall-threshold were examined at baseline, immediately postintervention, and about 5 weeks postintervention. The secondary outcome measures, that is, BBS, 6-minute walk test (6MWT), 10-meter walk test (10MWT), and Activity-specific Balance Confidence (ABC) scale were examined at baseline and immediately postintervention.

RESULTS: Compared with the WS&GT group, immediately postintervention participants in the PBBT group showed higher multiple-step thresholds in response to forward and backward surface translations (effect size [ES] = 1.07 and ES = 1.10, respectively) and moderate ES in the ABC scale (ES = 0.74). No significant differences were found in fall-threshold, BBS, 6MWT, and 10MWT between the groups.

CONCLUSIONS: Inclusion of perturbation training during rehabilitation of PwS improved reactive balance and balance confidence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app