Add like
Add dislike
Add to saved papers

Impacts of macrophage colony-stimulating factor (M-CSF) on the expression of natriuretic peptide precursor type C (NPPC) and regulation of meiotic resumption.

Gynecological Endocrinology 2019 Februrary 16
In mammalian follicles, oocytes are arrested at the diplotene stage of prophase I until meiotic resumption following the LH surge. C-type natriuretic peptide (CNP), encoded by natriuretic peptide precursor type C (NPPC), was found to be reduced by the LH surge in the follicle, and then lead to meiotic resumption by decreasing the level of cAMP in the oocyte. As a wide-spread cytokine, macrophage colony-stimulating factor (M-CSF) takes part in the oocyte development to maturation and ovulation. Our study describes the expression curve of M-CSF and its receptor and investigates the impact on the levels of CNP/NPPC to explore the possible mechanism for meiotic resumption in both vivo and vitro. The result shows after the LH/HCG surge, the expressions of M-CSF and its receptors decline significantly inside ovarian follicles, thus leading to transduction of a range of signals. Consequently, the expression of CNP reaches the peak at 2 h and immediately declines to a relatively low level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app