Add like
Add dislike
Add to saved papers

Electrochemical Sensors Containing Schiff Bases and their Transition Metal Complexes to Detect Analytes of Forensic, Pharmaceutical and Environmental Interest. A Review.

Schiff bases and their transition metal complexes are inexpensive and easy to synthesize. These compounds display several structural and electronic features that allow their application in numerous research fields. Over the last three decades, electroanalytical scientists of various areas have developed electrochemical sensors from many compounds. The present review discusses the applicability of Schiff bases, their transition metal complexes and new materials containing these compounds as electrode modifiers in sensors to detect analytes of forensic, pharmaceutical and environmental interest. In forensic sciences, Schiff bases are mainly used to analyze illicit drugs: chemical reactions involving Schiff bases can help to elucidate illicit drug production and to determine analytes in seized samples. In the environmental area, given that most methodologies provide Limit of Detection (LOD) values below the values recommended by regulatory agencies, Schiff bases constitute a promising strategy. As for pharmaceutical applications, Schiff bases represent an approach for analysis of complex biological samples containing low levels of the target analytes in the presence of a large quantity of interfering compounds. This review will show that new highly specific materials can be synthesized based on Schiff bases and applied in the pharmaceutical industry, toxicological studies, electrocatalysis and biosensors. Most literature papers have reported on Schiff bases combined with carbon paste to give a chemically modified electrode that is easy and inexpensive to produce and which displays specific and selective sensing capacity for different applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app