Add like
Add dislike
Add to saved papers

Length-Selective Synthesis of Acylglycerol-Phosphates through Energy-Dissipative Cycling.

The main aim of origins of life research is to find a plausible sequence of transitions from prebiotic chemistry to nascent biology. In this context, understanding how and when phospholipid membranes appeared on early Earth is critical to elucidating the prebiotic pathways that led to the emergence of primitive cells. Here we show that exposing glycerol-2-phosphate to acylating agents leads to the formation of a library of acylglycerol-phosphates. Medium-chain acylglycerol-phosphates were found to self-assemble into vesicles stable across a wide range of conditions and capable of retaining mono- and oligonucleotides. Starting with a mixture of activated carboxylic acids of different lengths, iterative cycling of acylation and hydrolysis steps allowed for the selection of longer-chain acylglycerol-phosphates. Our results suggest that a selection pathway based on energy-dissipative cycling could have driven the selective synthesis of phospholipids on early Earth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app