Add like
Add dislike
Add to saved papers

Autophagy inhibition with chloroquine reverts paclitaxel resistance and attenuates metastatic potential in human nonsmall lung adenocarcinoma A549 cells via ROS mediated modulation of β-catenin pathway.

Paclitaxel is one of the most commonly used drugs for the treatment of nonsmall cell lung cancer (NSCLC). However acquired resistance to paclitaxel, epithelial to mesenchymal transition and cancer stem cell formation are the major obstacles for successful chemotherapy with this drug. Some of the major reasons behind chemoresistance development include increased ability of the cancer cells to survive under stress conditions by autophagy, increased expression of drug efflux pumps, tubulin mutations etc. In this study we found that inhibition of autophagy with chloroquine prevented development of paclitaxel resistance in A549 cells with time and potentiated the effect of paclitaxel by increased accumulation of superoxide-producing damaged mitochondria, with elevated ROS generation, it also increased the apoptotic rate and sub G0/ G1 phase arrest with time in A549 cells treated with paclitaxel and attenuated the metastatic potential and cancer stem cell population of the paclitaxel-resistant cells by ROS mediated modulation of the Wnt/β-catenin signaling pathway, thereby increasing paclitaxel sensitivity. ROS here played a crucial role in modulating Akt activity when autophagy process was hindered by chloroquine, excessive ROS accumulation in the cell inhibited Akt activity. In addition, chloroquine pre-treatment followed by taxol (10 nM) treatment did not show significant toxicity towards non-carcinomas WI38 cells (lung fibroblast cells). Thus autophagy inhibition by CQ pre-treatment can be used as a fruitful strategy to combat the phenomenon of paclitaxel resistance development as well as metastasis in lung cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app