Add like
Add dislike
Add to saved papers

Coarse-grained modeling of the nucleation of polycyclic aromatic hydrocarbons into soot precursors.

The aggregation and physical growth of polycyclic aromatic hydrocarbon (PAH) molecules was simulated using a coarse-grained (CG) approach based on the Paramonov-Yaliraki (PY) potential and a stochastic Monte Carlo framework, following earlier efforts in which the structure [Phys. Chem. Chem. Phys., 2016, 18, 13736] and equilibrium thermodynamics [Phys. Chem. Chem. Phys., 2017, 19, 1884] were investigated and critically compared to the predictions of all-atom models. Homomolecular and heteromolecular assemblies of pyrene, coronene, and circumcoronene were considered at various temperatures and compositions, and the distributions of aggregation products were characterized. Under the simulated conditions, and in agreement with earlier studies, the clusters are rather small and, in the case of pyrene-rich systems, only formed below 1000 K. The clusters obtained by spontaneous aggregation of isolated molecules are statistically analysed. For the selected sizes of tetramers and octamers, broad distributions of isomers are obtained with a clear entropic stabilization. In heteronuclear assemblies, our results suggest a minor spontaneous segregation towards pure and equi concentrations at variance with purely statistical expectations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app