Add like
Add dislike
Add to saved papers

Three-dimensional hierarchical frameworks based on molybdenum disulfide-graphene oxide-supported magnetic nanoparticles for enrichment fluoroquinolone antibiotics in water.

Recently, water pollution caused by antibiotics is rapidly increasing. Thus, developing efficient, fast and sensitive detection methods for environmental antibiotics monitoring are still remaining elusive. Herein, a method for antibiotics analysis including lecofloxacin, pazcofloxacin and gatifloxacin in water by high performance liquid chromatography (HPLC) using molybdenum disulfide-graphene oxide-supported magnetic nanoparticles (Fe3 O4 /GO/MoS2 ) as the adsorbent of magnetic solid-phase extraction was developed. The as-prepared magnetic Fe3 O4 /GO/MoS2 nanocomposite exhibited good enrichment capability toward fluoroquinolone antibiotics and the analytes were absorbed within a short time ca. 2 min. The main drive forces of Fe3 O4 /GO/MoS2 nanocomposite and antibiotics were most likely attributed to hydrogen bonding and electrostatic attraction. A sensitive and effective MSPE-HPLC method was developed with low detection limits (LODs) ranging from 0.25 to 0.50 ng mL-1 . The recoveries obtained from the analysis of water sample were between 85.6% and 106.1% with relative standard deviations (RSDs, n = 5) lower than 9.5%. The developed method has a good potential for the analysis of organic contaminants in water with low cost and high sensitivity. Therefore, this finding is a promising strategy for designing high efficiency and fast antibiotics detection system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app