Add like
Add dislike
Add to saved papers

High Throughput Bar-Coating Processed Organic-Inorganic Hybrid Multi-Layers for Gas Barrier Thin-Films.

Herein, we demonstrate the preparation of a scalable bar-coated nanocomposite organic-inorganic hybrid film and developed robust barrier films for general purpose packaging. Using combinatory printing of polymers and nanocomposites by bar coating, a facile and effective barrier film fabrication method was developed. Based on a preliminary survey with several material combinations, a rationalized two-fold nanocomposite film was fabricated. The number of layers in the barrier film significantly modified oxygen barrier performance such that, for the 1 wt% ethylene vinyl alcohol (EVOH) intercalated film, the oxygen transmission rate (OTR) of the 5-layer sample was reduced to 31.69% of the OTR of the 3-layer sample (112.8 vs. 35.75 cc/(m² · day)). In addition, fine tuning the amount of EVOH polymer enabled further improvement of oxygen barrier performance. Intercalation of 2 wt% EVOH resulted an OTR improvement from 35.75 in the 1 wt% sample to 11.90 cc/(m² ·day), which is a 4.25-fold enhancement. Overall barrier characteristics proved that our approach could be used for large-area deposited, oxygen resistant, general purpose packaging applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app