Add like
Add dislike
Add to saved papers

Nitrogen-Doped Highly Photoluminescent Carbon Dots Derived from Citric Acid and Guanidine Carbonate.

A facile one-pot hydrothermal method for fabricating nitrogen-doped carbon dots (N-CDs) was developed by using citric acid as a carbon source and guanidine carbonate as a nitrogen and carbon source. X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectra indicated that the N-CDs were rich in elemental nitrogen. They had excellent stability in the presence of various salt concentrations and under UV irradiation. The N-CDs exhibited high quantum yields (52%), as well as down-conversion and up-conversion photoluminescence. The N-CD photoluminescence was quenched in the presence of Hg2+ , while nearly no intensity changes were observed when in the presence of Na+ , Mg2+ , Mn2+ , Zn2+ , Ni2+ , Cu2+ , Ba2+ , Cd2+ or Ca2+ . The binding constant ( K SV ) and detection limit were also determined.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app