Add like
Add dislike
Add to saved papers

Estimating Scale-Invariant Future in Continuous Time.

Neural Computation 2019 Februrary 15
Natural learners must compute an estimate of future outcomes that follow from a stimulus in continuous time. Widely used reinforcement learning algorithms discretize continuous time and estimate either transition functions from one step to the next (model-based algorithms) or a scalar value of exponentially discounted future reward using the Bellman equation (model-free algorithms). An important drawback of model-based algorithms is that computational cost grows linearly with the amount of time to be simulated. An important drawback of model-free algorithms is the need to select a timescale required for exponential discounting. We present a computational mechanism, developed based on work in psychology and neuroscience, for computing a scale-invariant time line of future outcomes. This mechanism efficiently computes an estimate of inputs as a function of future time on a logarithmically compressed scale and can be used to generate a scale-invariant power-law-discounted estimate of expected future reward. The representation of future time retains information about what will happen when. The entire time line can be constructed in a single parallel operation that generates concrete behavioral and neural predictions. This computational mechanism could be incorporated into future reinforcement learning algorithms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app