Add like
Add dislike
Add to saved papers

Impact of Diabetes Mellitus on Ventricular Structure, Arterial Stiffness, and Pulsatile Hemodynamics in Heart Failure With Preserved Ejection Fraction.

Background Heterogeneity in the underlying processes that contribute to heart failure with preserved ejection fraction ( HF p EF ) is increasingly recognized. Diabetes mellitus is a frequent comorbidity in HF p EF , but its impact on left ventricular and arterial structure and function in HF p EF is unknown. Methods and Results We assessed the impact of diabetes mellitus on left ventricular cellular and interstitial hypertrophy (assessed with cardiac magnetic resonance imaging, including T1 mapping pregadolinium and postgadolinium administration), arterial stiffness (assessed with arterial tonometry), and pulsatile arterial hemodynamics (assessed with in-office pressure-flow analyses and 24-hour ambulatory monitoring) among 53 subjects with HF p EF (32 diabetic and 21 nondiabetic subjects). Despite few differences in clinical characteristics, diabetic subjects with HFpEF exhibited a markedly greater left ventricular mass index (78.1 [95% CI , 70.4-85.9] g versus 63.6 [95% CI , 55.8-71.3] g; P=0.0093) and indexed extracellular volume (23.6 [95% CI , 21.2-26.1] mL/m2 versus 16.2 [95% CI , 13.1-19.4] mL/m2 ; P=0.0008). Pronounced aortic stiffening was also observed in the diabetic group (carotid-femoral pulse wave velocity, 11.86 [95% CI , 10.4-13.1] m/s versus 8.8 [95% CI , 7.5-10.1] m/s; P=0.0027), with an adverse pulsatile hemodynamic profile characterized by increased oscillatory power (315 [95% CI , 258-373] mW versus 190 [95% CI , 144-236] mW; P=0.0007), aortic characteristic impedance (0.154 [95% CI , 0.124-0.183] mm Hg/mL per second versus 0.096 [95% CI , 0.072-0.121] mm Hg/mL per second; P=0.0024), and forward (59.5 [95% CI , 52.8-66.1] mm Hg versus 40.1 [95% CI , 31.6-48.6] mm Hg; P=0.0010) and backward (19.6 [95% CI , 16.2-22.9] mm Hg versus 14.1 [95% CI , 10.9-17.3] mm Hg; P=0.0169) wave amplitude. Abnormal pulsatile hemodynamics were also evident in 24-hour ambulatory monitoring, despite the absence of significant differences in 24-hour systolic blood pressure between the groups. Conclusions Diabetes mellitus is a key determinant of left ventricular remodeling, arterial stiffness, adverse pulsatile hemodynamics, and ventricular-arterial interactions in HF p EF . Clinical Trial Registration URL : https://www.clinicaltrials.gov . Unique identifier: NCT 01516346.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app