Add like
Add dislike
Add to saved papers

Evaluation of the Antimicrobial Activity of Cationic Peptides Loaded in Surface-Modified Nanoliposomes against Foodborne Bacteria.

Bacteria are a common group of foodborne pathogens presenting public health issues with a large economic burden for the food industry. Our work focused on a solution to this problem by evaluating antibiotic activity against two bacteria ( Listeria monocytogenes and Escherichia coli ) of relevance in the field of foodstuffs. We used two approaches: (i) structural modification of the antimicrobial peptides and (ii) nano-vehiculisation of the modified peptides into polymer-coated liposomes. To achieve this, two antimicrobial peptides, herein named 'peptide +2' and 'peptide +5' were synthesised using the solid phase method. The physicochemical characterisation of the peptides was carried out using measurements of surface tension and dynamic light scattering. Additionally, nanoliposomes were elaborated by the ethanol injection method and coated with a cationic polymer (Eudragit E-100) through the layer-by-layer process. Liposome characterisation, in terms of size, polydispersity and zeta potential, was undertaken using dynamic light scattering. The results show that the degree of hydrophilic modification in the peptide leads to different characteristics of amphipathicity and subsequently to different physicochemical behaviour. On the other hand, antibacterial activity against both bacteria was slightly altered after modifying peptide sequence. Nonetheless, after the encapsulation of the peptides into polymer-coated nano-liposomes, the antibacterial activity increased approximately 2000-fold against that of L. monocytogenes .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app