Add like
Add dislike
Add to saved papers

Urine metabolic profiles in paediatric asthma.

BACKGROUND AND OBJECTIVE: Asthma is a global problem and complex disease suited for metabolomic profiling. This study explored the candidate biomarkers specific to paediatric asthma and provided insights into asthmatic pathophysiology.

METHODS: Children (aged 6-11 years) meeting the criteria for healthy control (n = 29), uncontrolled asthma (n = 37) or controlled asthma (n = 43) were enrolled. Gas chromatography-mass spectrometry was performed on urine samples of the patients to explore the different types of metabolite profile in paediatric asthma. Additionally, we employed a comprehensive strategy to elucidate the relationship between significant metabolites and asthma-related genes.

RESULTS: We identified 51 differential metabolites mainly related to dysfunctional amino acid, carbohydrate and purine metabolism. A combination of eight candidate metabolites, including uric acid, stearic acid, threitol, acetylgalactosamine, heptadecanoic acid, aspartic acid, xanthosine and hypoxanthine (adjusted P < 0.05 and fold-change >1.5 or <0.67), showed excellent discriminatory performance for the presence of asthma and the differentiation of poor-controlled or well-controlled asthma, and area under the curve values were >0.97 across groups. Enrichment analysis based on these targets revealed that the Fc receptor, intracellular steroid hormone receptor signalling pathway, DNA damage and fibroblast proliferation were involved in inflammation, immunity and stress-related biological progression of paediatric asthma.

CONCLUSION: Metabolomic analysis of patient urine combined with network-biology approaches allowed discrimination of asthma profiles and subtypes according to the metabolic patterns. The results provided insight into the potential mechanism of paediatric asthma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app