Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

APP depletion alters selective pre- and post-synaptic proteins.

The normal role of Alzheimer's disease (AD)-linked amyloid precursor protein (APP) in the brain remains incompletely understood. Previous studies have reported that lack of APP has detrimental effects on spines and electrophysiological parameters. APP has been described to be important in synaptic pruning during development. The effect of APP knockout on mature synapses is complicated by this role in development. We previously reported on differential changes in synaptic proteins and receptors in APP mutant AD transgenic compared to wild-type neurons, which revealed selective decreases in levels of pre- and post-synaptic proteins, including of surface glutamate receptors. In the present study, we undertook a similar analysis of synaptic composition but now in APP knockout compared to wild-type mouse neurons. Here we demonstrate alterations in levels of selective pre- and post-synaptic proteins and receptors in APP knockout compared to wild-type mouse primary neurons in culture and brains of mice in youth and adulthood. Remarkably, we demonstrate selective increases in levels of synaptic proteins, such as GluA1, in neurons with APP knockout and with RNAi knockdown, which tended to be opposite to the reductions seen in AD transgenic APP mutant compared to wild-type neurons. These data reinforce that APP is important for the normal composition of synapses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app