Add like
Add dislike
Add to saved papers

Metabolic studies of synaptamide in an immortalized dopaminergic cell line.

INTRODUCTION: Synaptamide, theN-acylethanolamine of docosahexaenoic acid (DHA), is structurally similar to the endocannabinoid N-arachidonoylethanolamine, anandamide. It is an endogenous ligand at the orphan G-protein coupled receptor 110 (GPR110; ADGRF1), and induces neuritogenesis and synaptogenesis in hippocampal and cortical neurons, as well as neuronal differentiation in neural stem cells.

PURPOSE: Our goal was to characterize the metabolic fate (synthesis and metabolism) of synaptamide in a dopaminergic cell line using immortalized fetal mesencephalic cells (N27 cells). Both undifferentiated and differentiating N27 cells were used in this study in an effort to understand synaptamide synthesis and metabolism in developing and adult cells.

METHODS: Radiotracer uptake and hydrolysis assays were conducted in N27 cells incubated with [1-14C]DHA or with one of two radioisotopomers of synaptamide: [α,β-14C2 ]synaptamide and [1-14C-DHA]synaptamide.

RESULTS: Neither differentiated nor undifferentiated N27 cells synthesized synaptamide from radioactive DHA, but both rapidly incorporated radioactivity from exogenous synaptamide into membrane phospholipids, regardless of which isotopomer was used. Pharmacological inhibition of fatty acid amide hydrolase (FAAH) reduced formation of labeled phospholipids in undifferentiated but not differentiated cells.

CONCLUSIONS: In undifferentiated cells, synaptamide uptake and metabolism is driven by its enzymatic hydrolysis (fatty acid amide hydrolase; FAAH), but in differentiating cells, the process seems to be FAAH independent. We conclude that differentiated and undifferentiated N27 cells utilize synaptamide via different mechanisms. This observation could be extrapolated to how different mechanisms may be in place for synaptamide uptake and metabolism in developing and adult dopaminergic cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app