Add like
Add dislike
Add to saved papers

Reversible Formation of Thermoresponsive Binary Particle Gels with Tunable Structural and Mechanical Properties.

ACS Nano 2019 Februrary 15
We investigate the collective behavior of suspended thermoresponsive microgels, that expel solvent and subsequently decrease in size upon heating. Using a binary mixture of differently thermoresponsive microgels, we demonstrate how distinctly different gel structures form, depending on the heating profile used. Confocal laser scanning microscopy (CLSM) imaging shows that slow heating ramps yield a core-shell network through sequential gelation, while fast heating ramps yield a random binary network through homo-gelation. Here, secondary particles are shown to aggregate in a monolayer fashion upon the first gel, which can be qualitatively reproduced through Brownian dynamics simulations using a model based on a temperature-dependent interaction potential incorporating steric repulsion and van der Waals attraction. Through oscillatory rheology it is shown that secondary microgel deposition enhances the structural integrity of the previously formed single species gel, and the final structure exhibits higher elastic and loss moduli than its compositionally identical homo-gelled counterpart. Furthermore, we demonstrate that aging processes in the scaffold before secondary microgel deposition govern the final structural properties of the bigel, which allows a detailed control over these properties. Our results thus demonstrate how the temperature profile can be used to finely control the structural and mechanical properties of these highly tunable materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app