Add like
Add dislike
Add to saved papers

Sediment potentially controls in-lake phosphorus cycling and harmful cyanobacteria in shallow, eutrophic Utah Lake.

Lakes worldwide are impacted by eutrophication and harmful algal or cyanobacteria blooms (HABs) due to excessive nutrients, including legacy P released from sediments in shallow lakes. Utah Lake (northern Utah, USA) is a shallow lake with urban development primarily on the east side of the watershed, providing an opportunity to evaluate HABs in relation to a gradient of legacy sediment P. In this study, we investigated sediment composition and P concentrations in sediment, pore water, and the water column in relation to blooms of harmful cyanobacteria species. Sediments on the east side of the lake had P concentrations up to 1710 mg/kg, corresponding to elevated P concentrations in pore water (up to 10.8 mg/L) and overlying water column (up to 1.7 mg/L). Sediment P concentrations were positively correlated with Fe2O3, CaO, and organic matter abundance, and inversely correlated with SiO2, demonstrating the importance of sediment composition for P sorption and mineral precipitation. Although the sediment contained <3% Fe2O3 by weight, approximately half of the sediment P was associated with redox-sensitive Fe oxide/hydroxide minerals that could be released to the water column under reducing conditions. Cyanobacteria cell counts indicate that blooms of Aphanizomenon flos-aquae and Dolichospermum flosaquae species tend to occur on the east side of Utah Lake, corresponding to areas with elevated P concentrations in the sediment, pore water, and water column. Our findings suggest that shallow lake eutrophication may be a function of P in legacy sediments that contribute to observed HABs in specific locations of shallow lakes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app