Add like
Add dislike
Add to saved papers

Cerium Based Metal-Organic Frameworks as Efficient Separator Coating Catalyzing the Conversion of Polysulfides for High Performance Lithium-Sulfur Batteries.

ACS Nano 2019 Februrary 15
In this work, we demonstrate cerium (Ce) based metal-organic-frameworks (MOFs) combined with carbon nanotubes (CNTs) to form Ce-MOF/CNT composites as separator coating material in Li-S battery system, which showed excellent electrochemical performance even under high sulfur loading, and much better capacity retention. At the sulfur loading of 2.5 mg/cm2, initial specific capacity of 1021.8 mAh/g at 1C was achieved in the Li-S cell with the Ce-MOF-2/CNT coated separator, which was slowly reduced to 838.8 mAh/g after 800 cycles with a decay rate of only 0.022% and the coulomb efficiency of nearly 100%. Even at a higher sulfur loading of 6 mg/cm2, the cell based on Ce-MOF-2/CNT separator coating still exhibited excellent performance with initial specific capacity of 993.5 mAh/g at 0.1 C. After 200 cycles, the specific capacity of 886.4 mAh/g was still retained. The excellent performance is ascribed to the efficient adsorption of the Ce-MOF-2 to Li2S6 species and its catalytic effect towards conversion of polysulfides, resulting in suppressed shuttle effect of ploysulfides in the Li-S batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app