Add like
Add dislike
Add to saved papers

Photoconversion of FM1-43 reveals differences in synaptic vesicle recycling and sensitivity to pharmacological disruption of actin dynamics in individual synapses.

ACS Chemical Neuroscience 2019 Februrary 15
The cycling of synaptic vesicles ensures that neurons can communicate adequately through their synapses on repeated occasions when activity is sustained, and several steps in this cycle are modulated by actin. The effects of pharmacological stabilization of actin with jasplakinolide or its depolymerization with latrunculin A was assessed on the synaptic vesicle cycle at individual boutons of cerebellar granule cells, using FM1-43 imaging to track vesicle recycling and its photoconversion to specifically label recycled organelles. Remarkable differences in the recycling capacity of individual boutons are evident and their dependence on the actin cytoskeleton for recycling is clear. Disrupting actin dynamics causes a loss of functional boutons and while this indicates that exo/endocytotic cycling in boutons is fully dependent on such events, this dependence is only partial in other boutons. Indeed, exocytosis and vesicle trafficking are impaired significantly by stabilizing or depolymerizing actin, whereas repositioning recycled vesicles at the active zone seems to be dependent on actin polymerization alone. These findings support the hypothesis that different steps of synaptic vesicle cycling depend on actin dynamics and that such dependence varies among individual boutons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app