Add like
Add dislike
Add to saved papers

Pulsatile Conduit Pressure Gradients in the HeartWare HVAD.

We evaluated mean, peak, and instantaneous pressure gradients across the outflow conduit in a pulsatile mock circulation loop which incorporated Heartware HVADs for left ventricular (LV) and right ventricular (RV) support. Steady-state 50 Hz measurements of left ventricular assist device (LVAD) flow (Q) and pressures within the proximal and distal outflow conduit were obtained at varying pump speed, LV contractility, hematocrit (HCT), heart rate (HR), and conduit diameter and length. Experiments were conducted using polyvinyl chloride (PVC) tubing and results confirmed in HVAD Gelweave conduit. Conduit diameter was negatively and nonlinearly associated with mean and peak gradient in both the PVC and HVAD conduits. There were no significant differences between the PVC and HVAD conduits in terms of mean Q, systolic dQdt, mean conduit gradient, or peak gradient. Across the 10 mm HVAD conduit, mean gradient correlated linearly with mean Q, systolic dQdt, HCT, and conduit length (r = 0.91), whereas peak gradient correlated with mean Q, systolic dQdt, and conduit length (r = 0.93). A nonlinear model to determine instantaneous gradient was highly predictive (r = 0.83) across a range of pump and circulatory conditions. In summary, hemodynamically significant pressure gradients are observed across the LVAD outflow conduit under physiologic conditions, which may result in diminished pump flow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app