Add like
Add dislike
Add to saved papers

Predicting object-mediated gestures from brain activity: an EEG study on gender differences.

Recent functional magnetic resonance imaging (fMRI) studies have identified specific neural patterns related to three different categories of movements: intransitive (i.e., meaningful gestures that do not include the use of objects), transitive (i.e., actions involving an object), and tool-mediated (i.e., actions involving a tool to interact with an object). However, fMRI intrinsically limits the exploitation of these results in a real scenario, such as a brain-machine interface (BMI). In this study, we propose a new approach to automatically predict intransitive, transitive, or tool-mediated movements of the upper limb using electroencephalography (EEG) spectra estimated during a motor planning phase. To this end, high-resolution EEG data gathered from 33 healthy subjects were used as input of a three-class k-Nearest Neighbours classifier. Different combinations of EEGderived spatial and frequency information were investigated to find the most accurate feature vector. In addition, we studied gender differences further splitting the dataset into only-male data, and only-female data. A remarkable difference was found between accuracies achieved with male and female data, the latter yielding the best performance (78.55% of accuracy for the prediction of intransitive, transitive and tool-mediated actions). These results potentially suggest that different gender-based models should be employed for future BMI applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app