Add like
Add dislike
Add to saved papers

Highly sensitive and selective "off-on" fluorescent sensing platform for ClO - in water based on silicon quantum dots coupled with nanosilver.

We present a new "off-on" fluorescence probe for detecting hypochlorite (ClO- ) based on silicon quantum dots coupled with silver nanoparticles (SiQDs/AgNPs) as nanocomplexes. Via introducing N-[3-(trimethoxysilyl)propyl]ethylenediamine and catechol as initial reactants, silicon quantum dots (SiQDs) with excellent properties were synthesized through a simple hydrothermal method. Transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology and structure of quantum dots. The fluorescence of SiQDs could be quenched by the silver nanoparticles (AgNPs) by surface plasmon-enhanced energy transfer (SPEET) from SiQDs (donor) to AgNPs (acceptor). The AgNPs could be etched by adding ClO- , thus freeing the SiQDs from the AgNP surfaces and restoring the SiQDs' fluorescence. The sensing system exhibits many advantages, such as wide linear response range, high sensitivity, and excellent selectivity. Under optimized conditions, wide linear ranges (from 0.1 to 100.0 μM) and low detection limits (0.08 μM) were obtained for ClO- . Graphical Abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app