Add like
Add dislike
Add to saved papers

Classifying single fibers based on fluorinated surface treatments.

Fibers are an important form of forensic evidence, but their evidential value can be severely limited when the identified characteristics of the fibers are common, such as blue cotton. Detecting chemical fiber treatments offers an avenue to further classify fibers and to improve their evidential value. In this report, we investigate the potential of fluoropolymer fiber coatings, used to impart oil and water-repellent properties in fabrics, for differentiating between fibers. The thin nature of these fiber surface modifications creates an analytical challenge for their detection on a single fiber, a typical sample size for forensic evidence. Specifically, pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) has shown promising selectivity but the sensitivity of the method is not adequate for single-fiber analysis of fluorinated coatings. To overcome this challenge, we utilize a newly developed elemental ionization source, plasma-assisted reaction chemical ionization (PARCI). The high sensitivity of py-GC-PARCI-MS for elemental fluorine analysis offers selective and sensitive detection of fluorinated pyrolysates among the non-fluorinated pyrolysates of the fiber core. As a result, fluoropolymer coatings are detected from 10-mm single-fiber samples. The technique is applied for classification of 22 fiber types, resulting in 4 distinct groups via hierarchical cluster analysis based on similarity of fluorine pyrograms. These results present the first study to classify fibers based on fluorinated coatings, and highlight the potential of py-GC-PARCI-MS for forensic analyses. Graphical Abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app