JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

3D Heteroatom-Doped Carbon Nanomaterials as Multifunctional Metal-Free Catalysts for Integrated Energy Devices.

Advanced Materials 2019 Februrary 15
Sustainable and cost-effective energy generation has become crucial for fulfilling present energy requirements. For this purpose, the development of cheap, scalable, efficient, and reliable catalysts is essential. Carbon-based heteroatom-doped, 3D, and mesoporous electrodes are very promising as catalysts for electrochemical energy conversion and storage. Various carbon allotropes doped with a variety of heteroatoms can be utilized for cost-effective mass production of electrode materials. 3D porous carbon electrodes provide multiple advantages, such as large surface area, maximized exposure to active sites, 3D conductive pathways for efficient electron transport, and porous channels to facilitate electrolyte diffusion. However, it is challenging to synthesize and functionalize isotropic 3D carbon structures. Here, various synthesis processes of 3D porous carbon materials are summarized to understand how their physical and chemical properties together with heteroatom doping dictate the electrochemical catalytic performance. Prospects of attractive 3D carbon structural materials for energy conversion and efficient integrated energy systems are also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app