Add like
Add dislike
Add to saved papers

Data-driven, projection-based respiratory motion compensation of PET data for cardiac PET/CT and PET/MR imaging.

BACKGROUND: Respiratory patient motion causes blurring of the PET images that may impact accurate quantification of perfusion and infarction extents in PET myocardial viability studies. In this study, we investigate the feasibility of correcting for respiratory motion directly in the PET-listmode data prior to image reconstruction using a data-driven, projection-based, respiratory motion compensation (DPR-MoCo) technique.

METHODS: The DPR-MoCo method was validated using simulations of a XCAT phantom (Biograph mMR PET/MR) as well as experimental phantom acquisitions (Biograph mCT PET/CT). Seven patient studies following a dual-tracer (18 F-FDG/13 N-NH3 ) imaging-protocol using a PET/MR-system were also evaluated. The performance of the DPR-MoCo method was compared against reconstructions of the acquired data (No-MoCo), a reference gate method (gated) and an image-based MoCo method using the standard reconstruction-transform-average (RTA-MoCo) approach. The target-to-background ratio (TBRLV ) in the myocardium and the noise in the liver (CoVliver ) were evaluated for all acquisitions. For all patients, the clinical effect of the DPR-MoCo was assessed based on the end-systolic (ESV), the end-diastolic volumes (EDV) and the left ventricular ejection fraction (EF) which were compared to functional values obtained from the cardiac MR.

RESULTS: The DPR-MoCo and the No-MoCo images presented with similar noise-properties (CoV) (P = .12), while the RTA-MoCo and reference-gate images showed increased noise levels (P = .05). TBRLV values increased for the motion limited reconstructions when compared to the No-MoCo reconstructions (P > .05). DPR-MoCo results showed higher correlation with the functional values obtained from the cardiac MR than the No-MoCo results, though non-significant (P > .05).

CONCLUSION: The projection-based DPR-MoCo method helps to improve PET image quality of the myocardium without the need for external devices for motion tracking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app