Add like
Add dislike
Add to saved papers

Optimised methods (SDS/PAGE and LC-MS) reveal deamidation in all examined transglutaminase-mediated reactions.

FEBS Open Bio 2019 Februrary
Transglutaminases (TGs) are a family of structurally and functionally related enzymes that catalyse calcium-dependent post-translational modifications of proteins through protein-protein crosslinking, amine incorporation, or deamidation. For many years deamidation mediated by TGs was considered to be a side reaction, but recently substrate-specific deamidations have been reported. Here we describe an optimised SDS/PAGE assay for the easy and rapid monitoring of the TG reaction with small peptides. The relative proportion of deamidation to transamidation was evaluated by densitometric analysis and confirmed by nano-liquid chromatography-nano-electrospray ionisation MS. We further investigated the effect of reaction conditions on transamidation and deamidation of TG1, TG2 and blood coagulation factor XIII A-subunit (FXIII-A) enzymes using a panel of glutamine-containing peptide substrates. The ratio of transamidation to deamidation was enhanced at high excess of the acyl-acceptor substrate and increasing pH. In addition, it was influenced by peptide substrates as well. Whereas deamidation was favoured at low cadaverine concentrations and acidic pH, no significant effect of calcium was observed on the ratio of transamidation/deamidation. Under our experimental conditions, deamidation always occurred in vitro even at high excess of the acyl-acceptor substrate, and the reaction outcome was shifted to deamidation at neutral pH. Our results provide clear evidence of the deamidation in the TG reaction, and may serve as an important approach for in vivo analysis of deamidation to better understand the role of TGs in biological events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app