Add like
Add dislike
Add to saved papers

L3MBTL2 regulates chromatin remodeling during spermatogenesis.

Lethal (3) malignant brain tumor like 2 (L3MBTL2) is a member of the MBT-domain proteins, which are involved in transcriptional repression and implicated in chromatin compaction. Our previous study has shown that L3MBTL2 is highly expressed in the testis, but its role in spermatogenesis remains unclear. In the present study, we found that L3MBTL2 was most highly expressed in pachytene spermatocytes within the testis. Germ cell-specific ablation of L3mbtl2 in the testis led to increased abnormal spermatozoa, progressive decrease of sperm counts and premature testicular failure in mice. RNA-sequencing analysis on L3mbtl2 deficient testes confirmed that L3MBTL2 was a transcriptional repressor but failed to reveal any significant changes in spermatogenesis-associated genes. Interestingly, L3mbtl2 deficiency resulted in increased γH2AX deposition in the leptotene spermatocytes, subsequent inappropriate retention of γH2AX on autosomes, and defective crossing-over and synapsis during the pachytene stage of meiosis I, and more germ cell apoptosis and degeneration in aging mice. L3MBTL2 interacted with the histone ubiquitin ligase RNF8. Inhibition of L3MBTL2 reduced nuclear RNF8 and ubH2A levels in GC2 cells. L3mbtl2 deficiency led to decreases in the levels of the RNF8 and ubH2A pathway and in histone acetylation in elongating spermatids, and in protamine 1 deposition and chromatin condensation in sperm. These results suggest that L3MBTL2 plays important roles in chromatin remodeling during meiosis and spermiogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app