Add like
Add dislike
Add to saved papers

Effects of hCG on reduced numbers of hCG receptors in the prefrontal cortex and cerebellum of rat models of Alzheimer's disease.

Age-associated changes in the levels of luteinizing hormone and human chorionic gonadotropin (hCG) are potential risk factors for Alzheimer's disease (AD); hCG concentration is related to the incidence of AD. The highest density of hCG receptors is in zones of the brain that are vulnerable to AD and streptozotocin (STZ) can decrease the density of this receptor. We investigated the effects of different doses of hCG on hCG receptor density in the prefrontal cortex and cerebellum in a rat model of STZ-induced AD. AD was induced by intracerebroventricular injection of 3 mg/kg STZ. The resulting AD rats were treated for 3 days with 50, 100 or 200 IU/200 μl hCG, or with saline as a control. Sections of prefrontal cortex and cerebellum were stained immunohistochemically and hCG receptor-immunoreactive (ir) neurons were counted. STZ injected into the lateral ventricles of rat brains reduced the density of hCG receptor-ir neurons in the prefrontal cortex and cerebellum. hCG administration resulted in a significant dose-dependent increase in the number of hCG receptor-ir neurons in the prefrontal cortex and cerebellum. The maximum increase in the number of receptors occurred following the 200 IU dose of hCG. Administration of hCG ameliorated the lowered density of hCG receptor-ir neurons in the cerebellum and prefrontal cortex in STZ-induced AD rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app